首页 > 资料 > 小学五年级数学教案

小学五年级数学教案

发布于:2022-03-24 08:06:04 作者:

小学五年级数学教案

  作为一名教学工作者,时常需要用到教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的小学五年级数学教案,希望能够帮助到大家。

小学五年级数学教案

小学五年级数学教案1

  教学内容

  《除法估算》选自苏教版九年制义务教育小学教科书数学第九册P51的内容。

  教学思路

  小学数学应该与现实生活相联系,使学生的学习更具有现实性、趣味性和挑战性。“估算”在实际生活中有着广泛的应用,与其他知识也密不可分。因而,在教学“除法估算”这一部分内容时,设计围绕从学生刚经历的秋游活动来展开,让学生独立思考以发现估算的题材、自主探索以感知估算的价值、小组合作来交流估算的策略、尝试解题来总结估算的方法、实践运用以提高估算的能力。

  设计理念

  1、数学教学活动要关注学生的个人知识和直接经验

  新的《国家数学课程标准》(实验稿)中明确指出,数学课程“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上”。因此,教学活动要以学生的发展为本,把学生的个人经验(除法计算)、直接经验(秋游的感受)和现实世界(生活中的数学)作为数学教学的重要资源。

  2、注重学生自主性和个性化的学习

  引导学生通过独立思考、自主探索、合作交流获得知识,激励学生自得自悟。并且注意在教学过程中要充分利用学生的已有经验,尊重他们不同的思维方式,让数学学习活动成为一个生动活泼的、主动的和富有个性的过程。

  教学目标

  1、经历除法估算方法的探索过程,理解并掌握估算的方法。

  2、能灵活运用估算方法解决实际的问题。

  3、在探索学习活动中,培养学生的实践意识,培养探索意识、合作意识、创新意识,并获得积极的、成功的情感体验。

  教学过程

  一、秋游场景引入,调动学生学习兴趣。

  上课后,出示秋游时拍的照片,询问学生当时的心情,一下就让学生回想起秋游那天的情景,因那天是远足秋游,学生对步行印象极深。在导入新课前,就提供路程和时间,让学生进行除数是一位数的除法估算的复习,求出同学们步行每小时大约行多少米。接着让学生把计时的单位改小,继续求每分钟的步行速度,便于我们判断走得比较快还是慢。此时顺利进入了除数是两位数的除法估算的教学中。

  二、创设问题情景,激励学生自行探究。

  1、关于所需车辆的计算:

  师:同学们走的速度很快呢,是玩的心情很迫切吧!怪不得有同学问老师:“为什么不坐车呢?大家想知道原因吗?”

  (1)出示题目并讲述:老师联系车子的时候只有中型客车,每辆车子可以坐44人,而我们四年级参加秋游活动的学生一共有235人。现在只有5辆车子可以用,你们认为够吗?

  (2)学生自己思考解答后交流。

  师:请同学来说说你的结果。(交流情况)

  生1:我觉得不够。因为235÷44≈6(辆),要6辆车子才可以。现在只有5辆,所以不够。

  (240)(40)

  生2:我认为够了。235÷44,235的近似数取200,235÷44≈5(辆)。

  (200)(40)

  生3:我认为是不够的,老师还没有算在里面呢。

  生4:老师,我用小数做的行吗?

  师:当然可以了。你课外知识真丰富!请你说说看。

  生4:我用235÷44≈5.3,把结果求近似数就是约等于5,所以我觉得5辆车就够了。

  生5:可是在现实生活中有时不能把后面的直接去掉,应该要向前面进一。

  生6:我同意生5的观点,5辆是不够的。我是这样想的:一辆车可以坐44人,那么5辆车大约可以坐44×5≈200(人),而200人<235人,多出来的人就坐不下了,要用6辆车才够。

  师:是啊,多出来的人怎么办呢?不去了吗?

  师:我看,问题主要是在生1和生2的两种解法中 235,也就是被除数的取近似数出现了分歧,那先来解决除数取近似数是怎样统一的?

  生7:只要省略最高位后面的尾数,保留整十数。

  师:其他同学有不同意见吗?(生都摇头表示没有)。问题是被除数到底该怎么考虑求近似数呢?在现实生活中来考虑这个问题,哪一种更符合实际呢?

  生齐:生1说的那种。

  生2:我现在想想应该是不够的,刚才没有仔细考虑。

  师:那就是说,被除数取近似数时,要考虑尽量和原来的数接近。

  生8:老师,那230也接近235的,为什么要取240呢?

  师:谁能回答这个问题?

  生9:因为240÷40是整数6,计算方便,算得快。

  师:为什么会这么快?

  生9:因为我想乘法口诀:四六二十四

  师:这个方法真妙啊!把除数的近似数求出来后,用乘法口诀来想,找个最接近被除数的,把它取作被除数的近似数。你真会动脑筋!

  师:(小结)我们用估计的方法求出了5辆车是不够的,所以决定远足秋游,还能观赏沿途风光呢,倒也是一举多得。

  2.关于缆车票价的估算(出示缆车图)

  (1) 理解价格表

  师:到了坐缆车的地方,同学们可兴奋了。不知道有没有同学注意到了这张价格表呢?你能看懂它吗?(指名学生发言)

  生10:大人坐缆车上山要20元,上山、下山一起要30元。

  生11:大人光上山不下山是20元。儿童的票价是大人的一半。

  师:两人说得都很棒,生11补充得更好,那按价格表的说明,同学们每人应该付多少钱呢?

  生12:(口答)30÷2=15(元)

  师:老师要负责付同学们的费用了。请大家帮忙算一下:一个人的票价是15元,我们班级有58名同学参加秋游,那么该付多少钱呢?

  (学生小组讨论后交流)

  生13:我们小组认为老师要付15×58≈1200(元)

  (20)(60)

  生14:我们小组认为老师只要付15×58≈900(元)

  (60)

  师:怎么一下就相差了300元?该听谁的呢?

  生15:我们小组是列竖式计算的,其实只要15×58=870(元)

  师:同样是估算,相差300元,这里就要注意联系生活实际的情况,估算目的是计算快速,但也要注意准确。大家想知道事实上老师付了多少钱吗?

  (学生纷纷猜测)

  生16:老师,我想您付的钱应该比870元少。

  师:为什么这么说?

  生16:因为我想集体乘坐应该可以优惠的,很多地方集体购票都可以打折的。

  师:你的生活经验真丰富!的确如你所料,老师实际上付了775元。

  (生恍然,纷纷点头。)

  师:58个同学乘坐缆车,总共用了775元,你能算算自己用了约多少钱吗?

  列式:775÷58 ≈

  生解答后交流:除数58的近似数是60,被除数考虑能被60整除,而又接近775,所以求近似数是780。师板书:775÷58 ≈ 13(元)

  三、提供数据信息,鼓励学生自选解题。

  在学生掌握了除法估算的方法以后,出示一组信息,让学生选择其中对于自己想了解的情况有用的数据,进行计算解答,并和小组里的同学交流。

  反思:

  这堂课上得生动活泼,同学们都投身于自己探究知识的活动之中。他们仔细观察,认真思考,合作交流,终于发现了知识、领悟了方法,品尝到了成功的喜悦。我在实践后的体会如下:

  1、生活即教育

  “生活即教育。”这句话是著名的教育家陶行知说的。也说明了学习应该是学生自己的实践活动。以往教科书上枯燥的例题让学生失去了学习数学的兴趣,而我们现在应该更加关注学生会关心什么、经历了什么、对什么感兴趣、在生活中想要发现些什么。因为生活本身就是一个巨大的数学课堂,将学习和学生们的生活充分融合起来,让他们在自己感兴趣的问题中去寻找、发现、探究、认识和掌握数学。只有这样,学生才会学得积极主动,才会学得兴趣盎然。

  2、估算与生活

  估算的内容在生活中随处可见,有着极其广泛的应用,在日常生活中,对量的描述,很多时候只要算出一个与精确数比较接近的近似数就可以了。这堂课的教学,让学生把自己的经历和数学知识在生活中的应用结合起来,因此培养了学生的素质和能力。

小学五年级数学教案2

  一、教学目标:掌握有括号的小数四则混合运算的运算顺序。

  二、教学重点:掌握有括号的小数四则混合运算的运算顺序。

  难点:弄清有括号的运算顺序。

  三、教学准备:多媒体。

  四、教学过程:

  A、准备题:

  19 ×(935-875÷ 25) [51÷(120 -103)+24]×64

  1、先让学生说一说运算顺序。

  2、让学生独立完成。校对。

  B、导入新课:

  有括号的小数四则混合运算和有括号的整数四则混合运算 相同。今天我们就来学习有括号的小数四则混合运算。

  C、讲授新课:

  例 3 :4.38 ÷ (36.94 + 34.3×0.2)

  提问:1、在有括号的算式里要先算什么?

  2、先算什么,再算什么?

  3、学生独立完成 。校对。

  4.38 ÷ (36.94 + 34.3×0.2)

  = 4.38 ÷(36.94 + 6.86)

  = 4.38 ÷ 43.8

  = 0.1

  例 4 : [(5.84 - 3.9 ) ÷0.4 + 0.15] ×0.92

  提问:1、先算什么,再算什么?

  2、独立完成。校对。

  3、做错的说一说错的原因。

  [(5.84 - 3.9 ) ÷0.4 + 0.15] ×0.92

  = [1.94 ÷0.4 + 0.15] ×0.92

  = [4.85 + 0.15] ×0.92

  = 5 ×0.92

  = 4.6

  D、巩固练习:

  1.8×(1.4 - 0.26 ÷2) [7.6 - 5 ×(0.3 + 0.9)]÷10

  1、先说一说运算顺序,再进行计算。

  2、抽两名学生板演。

  E、课堂小结:

  在既有中括号,又小括号应该先算什么,再什么?

  F、布置作业:

  P - 52 第一题、第二题和第三题。

  课堂作业本

  练习 十一

  一、教学目标:1、掌握小数四则混合运算的运算顺序。

  2、掌握方程的解法。

  3、学会应用题的分析方法。

  二、教学重点:掌握小数四则混合运算的运算顺序。

  难点:学会应用题的分析方法。

  三、教学准备:卡片和多媒体。

  四、教学过程:

  A、口算训练:

  6 + 4.4 = 0.01×80 = 7.4-0.9 = 6.3÷0.63 =

  2.3×5 = 0.4×0.5 = 0.2÷0.04 = 5÷0.02=

  18.6-6 = 5.4 + 6 = 9-1.35= 0.3×0.05 =

  1、以小组开火车形式看口算报得数。

  2、错的说一说错的原因。

  B、比较训练:

  8 -0.8 ÷5 + 0.24 ×9

  8 -(0.8 ÷5 + 0.24) ×9

  [8 -(0.8 ÷5 + 0.24)] ×9

  1、说一说每题的计算顺序。

  2、括号有什么作用?

  3、抽三名学生板演,教师巡视,帮助学困生。

  4、校对,错的说出错在哪一步?

  C、求未知数:

  7.2 + X = 15.4 X - 0.8 = 3.6

  1、抽两名学生板演,教师巡视。

  2、说一说每题求X的依据什么?

  D、应用题:

  P - 53 第五题:

  1、说一说解答应用题的一般步骤。

  2、先让学生分析数量关系。两人相互讨论。

  3、让学生独立完成,教师巡视。

  4、 42 ÷1.5 表示什么? 42 + 42 ÷1.5 表示什么?

  E、布置作业:

  P - 53 第三题。

  《课堂作业本》

  练习 十一 (二)

  一、教学目标:1、运用加法和乘法的运算定律进行简便运算。

  2、掌握四则混合运算的运算顺序。

  3、学会分析解答应用题的步骤。

  二、教学重点:掌握四则混合运算的运算顺序。

  难点:学会分析解答应用题的步骤。

  三、教学准备:多媒体

  四、教学过程:

  A、简便运算:

  0.27 ×99 + 0.27 0.25×1.25×40×8

  (0.25 + 2.5 + 25)×0.4 8.4 + 7.66 + 2.34 +1.6

  1、抽四名学生板演,教师巡视。

  2、说一说错的原因。

  B、四则混合计算:

  8.4 -8.4×1.5÷18

  (1 - 0.99)×(38.6- 8.6)

  [0.05 ×(83 + 117)]÷(9.6-5.6)

  1、先说一说每题的运算顺序。

  2、抽三名学生板演,教师巡视。

  3、校对,错的订正。

  C、文字题:

  2.5 乘以 6.6与1.4的和,积是多少?

  1、求什么?积是哪两个数相乘?

  2、所以我们要先求什么?

  3、列式计算。

  D、应用题讲解:

  P - 55 第十二题:

  1、要求平均每天的营业收入四月份比三月份多多少元?我们 必须知道哪两个条件?

  2、四月份每天怎么求?三月份每天怎么求?

  3、四月份为什么要除以30,而三月份要除以31呢?

  E、课堂小结:

  今天我们练习了哪些内容?哪些方面还掌握的不够呢?

  F、拓展题:

  先让学生讨论完成。

  G、布置作业:

  《课堂作业本》

小学五年级数学教案3

  一、教学内容:

  教材第94页例1、“练一练”,练习二十—第1—4题。

  二、教学要求:

  使学生学会用方程解答数量关系稍复杂的求两个数的(和倍、差倍)应用题,能正确说出数量之间的相等关系;学会用检验答案是否符合已知条件来检验列方程解应用题的方法,提高学生列方程解应用题和检验的能力。

  三、教学过程:

  一、复习导入。

  1、复习:果园里有梨树42棵,桃树的棵数是梨树的3倍。梨树和桃树一共有多少棵?(板演)

  2、根据下列句子说出数量之间的相等关系。

  杨树和柳树一共120棵

  杨树比柳树多120棵

  杨树比柳树少120棵

  3、出示线段图:梨树:

  桃树:

  从图上你可以知道什么?如果梨树的棵树用x表示,桃树的棵数怎样表示?

  4、出示条件:母鸡的只数是公鸡的5倍。

  根据这个条件,你可以知道什么?如果公鸡的只数用x表示,那么母鸡的只数可以怎样来表示?

  5、在括号里填上含有字母的式子。(练习二十一第1题)

  6、交流:板演,你是根据怎样的数量关系来解答的?

  7、导入:在四年级时我们学习了列方程解应用题,谁来说一说列方程解应用题的步骤是怎样的?今天这节课,我们继续来学习列方程解应用题。(出示课题)

  二、教学新课。

  1、教学例1 果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?

  (1)齐读。

  (2)这道题已知什么条件,要求什么问题?边问边画出线段图。

  桃树的棵数是梨树的3倍,把哪个数量看做一份?用线段图来表示我们先画梨树,桃树的棵数有这样的几份?还告诉我们什么条件?这道题的问题是什么?

  (3)“梨树和桃树各有多少棵”是什么意思?

  这道题要求的数量有两个,你认为用什么方法做比较简便?

  (4)下面我们就以小小组为单位进行讨论:这道题用方程来做,学生讨论。

  (5)交流。

  (6)通过讨论和同学们的交流,你们会解这道题了吗?请做在自己的作业本上。一生板演,其余齐练。

  校对板演。还可以怎样求桃树的棵树?

  (7)方程解好了,下面要做什么了?你准备怎样检验?(把问题作为已知数进行检验,)生说,师板书,齐答。

  2、教学想一想。

  现在我们把第一个条件改一下,变成“果园里的桃树比梨树多84棵”,你能列方程解答吗?(出示改编题)

  一生板演,其余齐练。

  集体订正。提问:设未知数时你是怎样想的?你是根据什么来列方程的?

  3、请同学们比较这两道题,在解答上有什么相同的地方?又有什么不同的地方?为什么会不同?因此,你认为列方程解应用题的关键是什么?(找出数量之间的相等关系。)

  4、小结。

  从刚才的两道题可以看出,如果两个数量有倍数关系,就可以把1份的数看做x,几份的数就是几x;把两部分相加就是它们的和,两部分相减就是它们的差。我们可以根据数量之间的相等关系,列方程来解答。

  三、巩固练习。

  1、练一练。校对:你是根据哪个条件说出数量之间的相等关系的?

  2、只列式不计算。

  一个自然保护区天鹅的只数是丹顶鹤的2.2倍。

  (1)已知天鹅和丹顶鹤一共有96只,天鹅和丹顶鹤各有多少只?

  (2)已知天鹅的只数比丹顶鹤多36只,天鹅和丹顶鹤各有多少只?

  3、选择正确的解法。

  明明家鸡的只数是鸭的3倍,鸡和鸭一共56只,鸡和鸭各有多少只?

  (1)解:设鸡和鸭各有x只。 x+3x=56

  (2)解:设鸡有x只,鸭有3x只。 x+3x=56

  (3)解:设鸭有x只,鸡有3x只。 x+3x=56

  商店里苹果的重量是梨的3.6倍,苹果比梨多26千克。苹果和梨各有多少千克?

  (1)解:设梨有x千克,苹果有3.6x千克。 3.6x-x=26

  (2)解:设梨有x千克,苹果有3.6x千克。 3.6x+x=26

  四、课堂总结。

  今天我们一起学习了什么?你感觉到今天学的应用题有什么特点?那你有哪些收获呢?还有什么疑问吗?

  老师有个疑问,想请你们帮我解决:为什么今天学的应用题用方程来做比较好,而复习题用算术方法做比较好呢?说明同学们掌握得不错。

  五、作业:

练习二十一/2—5

小学五年级数学教案4

  设计意图:教学实践告诉我们,教学的成败,学生的学习效果如何,在很大程度上取决于学生的参与程度。教师的全部劳动,归根到底就是为了学生的主动学习。因此,激发学生的参与意识,让学习成为学生发自内心的需要,让课堂成为学生获取知识的乐园是我们每位教师应努力的方向。还有对学生的评价,包罗万象,既有对学习方法的评价,又有对学习情感的评价,也有对自己的鞭策鼓励。这样的评价,教师只需适当点拨、启发,便能让学生在被他人肯定的同时得到极大的满足感,增强学生主动参与探究的自信心,从而把主动探究学习作为自己学习生活中的第一乐趣。这节课我在设计上注重这两点,来设计和展开教学。

  教学要求 在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的最大公约数,培养学生的观察能力。

  教学重点 掌握求两个数的最大公约数的方法。

  教学难点 正确、熟练地求出两种特殊情况的最大公约数。

  教学过程

  一、创设情境

  1、思考并回答:①什么是公约数,什么是最大公约数?②什么是互质数?质数与互质数有什么区别?(回答后做练习十四的第5题)

  2、求30和70的最大公约数?

  3、说说下面每组中的两个数有什么关系?

  7和21 8和15

  二、揭示课题

  我们已经学会求两个数的最大公约数,这节课我们继续学习求这两种特殊情况的最大公约数(板书课题)

  三、探索研究

  1.教学例3

  (1)求出下列几组数的最大公约数:7和21 8和15 42和14 17和19

  (2)观察结果:通过求这几组数的最大公约数,你发现了什么?

  (3)归纳方法:先让学生讲,再指导学生看教材第69页的结论。

  (4)尝试练习。

  做教材第69页的“做一做”,学生独立做后由学生讲评,集体订正。

  四、课堂实践

  1.做练习十四的第7题,学生独立观察看哪几组数是第一种特殊情况,哪几组数是第二种特殊情况,再解答出来。

  2.做练习十四的第6题,先让学生独立作出判断后再让学生讲明判断的.理由。

  3.做练习十四的第9题,学生口答集体订正。

  五、课堂小结

  学生小结今天学习的内容、方法。

  六、课堂作业

  1、做练习十四的第8、10、11题。

  2、有兴趣、有余力的同学可做练习十四的第13*题和思考题。

  课后反思:有的数学问题比较复杂,光靠个人的学习,在短时间内达不到好的效果时,教学时,我让学生前后桌组成四人小组,小组中搭配上、中、下三类学生,由一位优等生任组长,组织组内同学讨论如下问题:(1)、一个数的约数与这个数的质因数有什么联系?

  (2)、两个数的公约数与这两个数公有的质因数有什么联系?

  (3)、怎样求两个数的最大公约数?

  我们知道“最大公约数”一课最难理解的就是其算理,我也尝试过多种不同的教学组织形式,但无论是老师讲解还是学生看书,给学生的感觉大多是:太难懂了,算了吧!这时,何不让学生讨论讨论,让他们把自己的想法在组内说说?俗话说:三个臭皮匠顶一个诸葛亮。这样,不仅保证了全班同学的全员参与,使每位同学都有了发表自己见解的机会;而且通过小组之间的交流、启发、讨论、总结,学生的思路被打开了,想法在逐步完善着,学生个人对最大公约数算理的理解都会有不同幅度的提升;学生的归纳、推理、判断等能力也在这里得到提高;学生的合作意识,团结协作的精神也在不断增强;当自己的意见被采纳时,学生也在尽情地享受着交流成功的乐趣。如果学生能把学习当成一件“美差”去做,这不正是我们最想看到的吗?

小学五年级数学教案5

  第1题

  先让学生找15的因数和倍数,交流找因数和倍数的方法。在此基础上,还可以引导学生观察15最大的因数是几,15最小的倍数是几。

  第2题

  可以让学生先列出9的倍数(54以内):9,18,27,36,45,54。再列出54的所有因数:1,2,3,6,9,18,27,54。然后,再回答问题。答案:这个数有四种可能:9、18、27、54,对不同的学生可以有不同的要求,不一定要所有学生把四种全部找出来。

  第3题

  主要要引导学生交流一下判断的方法。如果学生有困难,可以分层次进行,可以先填奇数和偶数,再填质数和合数。

  第4题

  本题是对本单元所学概念的理解巩固与综合运用。第1题结论是5,第2题结论是13和2,第3题的结论是36或92。在完成本题基础上,教师还可以引导学生运用本单元知识自己编一些这样的题,促进学生对概念的理解。

  第5题

  先让学生解决第一个问题,并交流是如何思考的,一般可以从每盒瓶数是不是90的因数考虑,也可以用除法来解决,6、5、3都是90的因数,能正好装完,8不是90的因数,不能正好装完。第二个问题是引导学生思考90还有哪些因数,同时还要注意联系生活实际,如每盒2瓶,9瓶,10瓶等都较合理,每盒90瓶就不太合理。

  第6题

  本题为思考题,主要是引导学生探索、研究“三个连续自然数组成的数一定是3的倍数”的规律。教学时,可以提出问题,引导学生根据3的倍数自主探索,交流研究结果,最后得出结论。

  〖你知道吗〗

  教师可以结合史料详细介绍哥德巴赫猜想和陈景润的研究成果,激发学生研究数学的兴趣和民族自豪感。帮助学生理解“猜想”时,可以让学生自己再举一些例子,例10=3+7,18=11+7,42=31+11等。

小学五年级数学教案6

  教学目标

  1.通过教学,学生懂得应用加法运算定律可以使一些分数计算简便,会进行分数加法的简便计算.

  2.培养学生仔细、认真的学习习惯.

  3.培养学生观察、演绎推理的能力.

  教学重点

  整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.

  教学难点

  整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.

  教学过程

  一、复习准备【演示课件“整数加法运算定律推广到分数加法”】

  1.教师:整数加法的运算定律有哪几个?用字母怎样表示?

  板书:a+b=b+a

  (a+b)+c=a+(b+c)

  2.下面各等式应用了什么运算定律?

  ①25+36=36+25

  ②(17+28)+72=17+(28+72)

  ③6.2+2.3=2.3+6.2

  ④(0.5+1.6)+8.4=0.5+(1.6+8.4)

  教师:加法交换律和结合律适用于整数和小数,是否也适用于分数加法呢?这节课我们就一起来研究.

  二、学习新课【继续演示课件“整数加法运算定律推广到分数加法”】

  1.出示:下面每组算式的左右两边有什么关系?

  ○○

  教师说明:整数加法运算定律,对分数加法同样适用.

  教师提问:整数加法的运算定律可以在什么范围内使用?

  (加法的交换律、结合律中的数,既包括了整数,又包括了小数和分数)

  2.出示例3计算:

  观察:这些加数分母和分子有什么特点?

  思考:怎样可以使计算简便?

  学生口述,教师板书:

  教师提问:这道题哪里应用了加法交换律?哪里应用了加法结合律?

  最后结果要注意什么问题?

  学生总结:应用整数加法的运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便.

  三、巩固反馈.

  1.在下面的○里填上合适的运算符号.

  ①○

  ②○

  2.用简便方法计算下面各题.【继续演示课件“整数加法运算定律推广到分数加法”】

  ①②

  3.思考题:

  已知你能很快算出的和吗?

  四、课堂总结.

  整数加法的交换律、结合律对分数加法同样适用,应用加法运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便.

  五、布置作业.

  用简便方法计算下面各题.

  六、板书设计

小学五年级数学教案7

  教学内容:观察物体

  教学目标:

  1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。

  2.培养学生从不同角度观察,分析事物的能力。

  3.培养学生构建简单的空间想象力。

  重点:帮助学生构建初步的空间想象力。

  难点:帮助学生构建初步的空间想象力。

  教学过程:

  一、谜语导入

  请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)

  二、合作探究

  (一)整体观察

  1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:

  你观察到的正方体是什么样的?

  在你的位置上观察,你看到了哪几个面?

  2.学生汇报交流。

  学生自由走动,观察。汇报交流。

  3.解释应用

  教师出示两个正方体的立体图,一个有虚线,另一个没有。

  提问:谁能用刚学到的知识解释一下正方体为什么这样画?

  学生解释说明。

  (二)分别从三个面进行观察(出示例1)

  1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。

  学生离开座位自由观察。

  2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。

  总结学生的发言:从不同的方向观察,所看到的形状是不一样的。

  三、拓展应用

  1.做教科书例2

  2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。

  学生玩游戏,教师指导。

  四、总结

  本节课你学会了什么?

  五、作业布置

  兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。

  1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。

  2.从一个面看到物体的形状,可以有多种不同的摆放方式。

  3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。

小学五年级数学教案8

  一、准备练习

  (一)口算

  3.8+1.2 2.54 1.58

  1.50.3 0.64+0.16 7.6+0.24

  5-1.8 1.2580 3.64

  6.3+2.45+3.7 3.56-1.57-0.43

  0.87125 (2.5+0.9)4

  (1.5+0.25)4 0.64+1.44

  (二)口答,在□里填上适当的数.(说出依据)

  1.3.18□=1.2□

  2.(2.5+3.5)□=□□○□4

  3.□+4.3=□+0.86

  4.(2.51.2)□=1.2(□□)

  5.7.6-2.8-□=□-(□+3.2)

  (三)小结引入

  我们运用一些运算定律或者运算性质可以使计算简便,在四则混合运算中,能不能运用这些运算定律和性质,使计算简便呢?

  二、讲授新课

  (一)教学例4

  1.82.58+1.81.42

  1.观察算式特点

  2.学生试做

  方法一:1.82.58+1.81.42 方法二:1.82.58+1.81.42

  =1.8(2.58+1.42) =4.644+2.556

  =1.84 =7.2

  =7.2

  3.观察比较:两种方法哪一种计算起来比较简便?

  (第一种方法应用乘法分配律来计算,第二种方法只是根据一般的运算顺序)

  4.练习

  1.82.58+1.81.42+0.5

  =1.8(2.58+1.42)+0.5 (乘法分配律)

  =1.84+0.5

  =7.2+0.5

  =7.7

  5.小结

  通过刚才的练习,你对简算有什么新的认识?

  三、巩固练习

  (一)计算下面各题

  1.561.7+0.441.7-0.7

  11.72-7.85-(1.26+0.46)

  (二)计算下面各题,能用简便算法的用简便算法

  10.64+7.652.4+11.76

  12.9〔14.66-(1.3+8.2)〕

  9.83(3.8-2.3)+1.56.17

  6.752-〔4.7(0.54-0.38)+2.8〕

  15.4〔8(6.34-4.59)〕

  (三)思考题:填同一个数

  □-□+□+(□□□-□)=10

  四、课堂小结

  在四则混合运算中,有时虽然不能把整个题目简便计算,但是应该随时注意是不是有的步骤可以简算,能简算的,尽量使计算简便,不能简算的再按运算顺序计算.

  五、课后作业

  (一)计算下面各题,能用简便算法的用简便算法.

  1.10.64+7.652.4+11.76

  2.12.75[14.6-(1.3+8.2)]

  3.9.831.5+6.171.5

  4.15.4[8(6.34-4.59)]

  (二)新兴煤矿七月份产煤4.85万吨,八月份产煤5万吨,九月份产煤5.65万吨.平均每月产煤多少万吨?

小学五年级数学教案9

  教学目标

  1.理解和掌握循环小数的概念.

  2.掌握循环小数的计算方法.

  教学重点

  理解和掌握循环小数等概念.

  教学难点

  理解和掌握循环小数等概念.

  教学过程

  一、铺垫孕伏

  (一)口算

  0.8times;0.5= 4times;0.25= 1.6+0.38=

  0.15divide;0.5= 1-0.75= 0.48+0.03=

  (二)计算

  21divide;3= 15divide;3= 12divide;3= 10divide;3=

  教师提问:通过计算,你发现了什么?

  二、探究新知

  (一)教学例7

  例7 10divide;3

  1.列竖式计算

  教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)

  使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.

  所以10divide;3=3.33……

  (二)教学例 8

  例8 计算58.6divide;11

  1.学生独立计算

  2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,

  所以58.6divide;11=5.32727……

  3.观察比较 10divide;3=3.33…… 58.6divide;11=5.32727……

  教师提问:你有什么发现?

  (小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)

  4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.

  教师板书:循环小数.像3.33……和5.32727……是循环小数.

  5.简便写法

  3.33……可以写作 ;

  5.32727……可以写作

  6.练习

  把下面各数中的循环小数用括起来

  1.5353…… 0.19292…… 8.4666……

  (三)教学例9

  例9 一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了 .大约用去了多少千克汽油?(保留两位小数)

  1.学生独立列式计算

  130divide;6=21.666……

  asymp;21.67(十克)

  答:小汽车大约装21.67千克汽油.

  2.集体订正

  重点强调:保留两位小数,只要除到小数点后第三位即可.

  3.练习

  计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.

  28divide;18 2.29divide;1.1 153divide;7.2

  (四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?

  1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的.也就是被除数能够被除数除尽.如3divide;2=1.5.小数部分的位数是有限的小数,叫做有限小数.

  2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的.如10divide;3=3.33……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.

  三、课堂练习

  (一)计算下面各题,哪些商是循环小数?

  5.7divide;9 14.2divide;11 5divide;8 10divide;7

  (二)下面的循环小数,各保留三位小数写出它们的近似值.

  1.29090…… 0.0183838……

  0.4444…… 7.275275……

  四、布置作业

  (一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.

  9.4divide;6 38.2divide;2.7 204divide;6.6 6.64divide;3.3

  (二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)

小学五年级数学教案10

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的商也可以用谁来表示

  2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

小学五年级数学教案11

  教学目标:

  知识与技能:会解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。

  过程与方法:引导学生用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。

  情感与态度:在学习中使学生明白时间的宝贵,养成珍惜时间的好品质。

  教学重点:

  用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。(加法计算)

  教学难点:

  学生对于题意的理解。

  教学过程:

  一、导入阶段

  出示

  小丁丁和同学约好上午9时15分在动物园门口集合,小丁丁早晨7时48分出门,路上用了1小时23分。

  (1)在这段文字叙述中你获得了哪些信息

  上午9时15分在动物园门口集合;

  早晨7时48分出门;

  路上用了1小时23分。

  (2)9时15分、7时48分、1小时23分各表示什么,有什么不同?

  9时15分、7时48分表示时刻,是指某一事件发生的时候。

  1小时23分表示时间,是指某一事件经过了多久。

  (3)出示问题“小丁丁几时几分到达动物园门口”这是求时间还是求时刻?

  是求时刻

  (4)今天我们就要来讨论关于时间的计算的问题。(出示课题)

  [对于学生经常会混淆的“时间”“时刻”这2个数学用语进行简单的辨析。使学生在解决问题时能明确地知道是要求什么?]

  二、中心阶段

  1、请学生试着计算。

  2、汇报

  (1)画图

  (2)竖式算

  注意:这步计算,“分”的计算满60要向“时”进1,因为分与时之间的进率是60。

  答:小丁丁9时11分到达动物园门口。

  3、比较2种方法得出2种方法都很好,都很直观、很简洁。

  4、小结

  我们可以利用时间线段图和竖式来解决某一时刻经过多少时间会到哪一个时刻的计算问题。

  三、练习阶段

  7时50分+45分=()时()分

  8时26分+2小时37分=()时()分

  15分18秒+3分52秒=()分()秒

小学五年级数学教案12

  探究目标:

  1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。

  2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。

  3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。

  4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。

  教学重难点:

  学生会应用圆柱体积公式解决实际问题。

  探究过程:

  一、迁移引入

  提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。

  提问:如果已知的是底面半径和高,该怎么求呢?

  二、自主探究

  1、出示长方体鱼缸。

  要计算这个长方体鱼缸能装多少水,就是求什么?

  怎样求这个长方体的容积呢?

  2、出示圆柱形鱼缸。

  ⑴估测。这个圆柱形鱼缸的容积大约是多少?

  ⑵操作、汇报。如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。

  学生可能的回答有:

  生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)

  生2:我们小组测量的是底面直径和高。底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)

  生3:我们测量的是底面半径和高。3.14×152×12=8478(立方厘米)

  ⑷评价。

  组织学生间进行评价。你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。

  ⑸反思。引导学生将实际计算结果与自己的估测结果进行对比。自己矫正偏差。

  ⑹延伸。如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?

  3、自学例题。

  组织学生自学课本例5。同桌的两名同学结合例5的解答过程提出相关的数学问题,进行互问互答。

  三、巩固练习

  做教科书第80页“做一做”中的第2题、练习二十一的第5题。

  学生独立完成,指名板演,集体评讲。

  四、创意作业

  学生综合运用所学的知识,进行计算、绘图、裁剪、粘贴等多项操作活动。

  在一张长30厘米,宽20厘米的长方形纸上进行合理的裁剪,做一个无盖的圆柱形笔筒。比一比,谁做的笔筒容积最大?

小学五年级数学教案13

  教学目标

  1.理解除数是小数的除法的算理,掌握除数是小数的计算法则

  2.培养学生的计算能力

  教学重点

  掌握除数是小数的除法的计算法则

  教学难点

  理解把除数是小数的除法转化为整数除法的道理

  教学过程

  一、铺垫孕伏

  (一)指名板演,集体订正:5628÷67

  (二)演示课件:商不变的性质

  (三)教师导入:除数是整数的除法,我们已经掌握了它的计算方法,那么除数是小数的

  除法该怎样计算呢?这节课我们就来解决这个问题.

  (板书课题:除数是小数的除法)

  二、探究新知

  (一)教学例4

  1.演示课件:一个数除以小数

  2.尝试不同思路(把题里的米数都改写成厘米数来计算)

  56.28米=5628厘米

  0.67米=67厘米

  5628÷67=84(条)

  教师说明:这种方法是正确的,但是有一定的局限性

  3.思考:为什么要把除数和被除数都扩大100倍呢?扩大1000倍可以吗?

  4.练习:继续演示课件:一个数除以小数

  5.计算除数是小数的除法的关键是什么?转化时以谁为标准?

  6.小结计算方法

  计算除数是小数的除法,先移动除数的小数点,使它变成整数.看除数的小数

  点向右移动几位,被除数的小数点也向右移动几位,然后按除数是整数的除法法则进行计算.

  (二)教学例5

  例5

  10.5÷0.75

  1.学生试算

  2.集体订正

  教师强调:(1)位数不够用“0”补足.

  (2)商的小数点和被除数的小数点对齐.

  3.练习

  51.3÷0.27

  26÷0.13

  (三)总结除数是小数的小数除法的计算法则

  除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右

  移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用“0”补足);然后按照除数是整数的小数除法进行计算.

  三、课堂小结

  这节课我们学习了什么?除数是小数的除法和除数是整数的小数除法有什么联

  系?通过今天的学习,你有什么收获?

  四、课堂练习

  (一)填空

  除数是小数的除法,先移动_____小数点,使它变成整数;除数的小数点向右移动

  几位,_____也向右移动几位,位数不够的,在被除数的末尾_____补足;然后按照除数是_____的小数除法进行计算.

  (二)把下面的题变成除数是整数的除法

  4.68÷1.2=□÷12

  2.38÷0.34=□÷□

  5.2÷0.32=□÷32

  161÷0.46=□÷□

  (三)计算下面各题

  6.21÷0.03=

  210÷1.4

  1.104÷2.4

  五、布置作业

  (一)计算下面个题.

  19.76÷5.2

  109.2÷0.42

  8.4÷0.56

  10.8÷4.5

  6.825÷0.91

  25.84÷1.7

  (二)世界上最大的鸟是鸵鸟,体重达135千克,最小的鸟是蜂鸟,体重只有0.0016千克.鸵鸟的体重是蜂鸟的多少倍?

  六、板书设计

  一个数除以小数

  例4做一条短裤要用布0.67米,56.28米布

  例5计算

  10.5÷0.75

  可以做多少条短裤?

  答:56.28米布可以做84条短裤

  一个数除以小数(二)

小学五年级数学教案14

  教学目标

  1.通过教学使学生在旧知识的基础上,进一步认识用字母表示运算定律和计算公式.

  2.理解用字母表示数的意义.

  3.知道一个数的平方的含义及读写法,学会在含有字母的式子里简写和略写乘号.

  4.使学生学会应用字母公式求值.

  教学重点

  用字母表示运算定律和公式;根据字母公式求值.

  教学难点

  理解一个数的平方的含义,乘号的简写和略写.

  教学过程

  一、铺垫孕伏

  (一)在下面的□里填上适当的数,并说明根据什么.

  18+34=34+□

  (35+55)+45=357+(□+□)

  35×□=59×□

  (1.2×2.5)×4=1.2×(□×□)

  (4+8)×□=□×3.5+□×□

  二、探究新知

  (一)教学用字母表示运算定律.

  1.学生叙述各运算定律的内容,并用字母公式表示出来.

  教师板书

  (1)加法交换律:

  (2)加法结合律:

  (3)乘法交换律:

  (4)乘法结合律:

  (5)乘法分配律:

  2.观察比较:用字母表示运算定律比用文字叙述有哪些优点?

  优点:用字母表示运算定律比用文字叙述运算定律更简明易记,也便于应用.

  (二)教学用字母表示计算公式.

  1.教学用字母表示图形面积公式(出示图片:图形面积公式)

  (1)表示正方形的面积,表示正方形的边长.

  (2)表示平行四边的面积,、分别表示平行四边形的底和高.

  (3)表示三角形的面积,、分别表示三角形的底和高.

  (4)表示梯形的面积、、分别表示梯形的下底和高.

  2.教学一个数的平方的含义及正方形周长的书写格式.

  (1)读出下面各式,并说明表示的意义.

  (2)把下面各式写成一个数的平方的形式.

  5×5

  (3)省略乘号,写出下面各式.

  (4)根据运算定律在□填上适当的字母或数.

  (□+□)+□

  □·(□·□)

  (5)如果用表示长方形的长,表示宽,那么

  这个长方形的面积_____________________,

  这个长方形的周长_____________________.

  教师小节:在含有字母的式子里,乘号可以省略,但加号、减号、除号都不能省略,如:

  不能写成;在两个数相乘的时候,乘号不能省略不写,可以改为“·”,但容易与小数点混淆,所以一般仍记作“×”.

  3.教学例1.

  例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.

  教师说明:在我们计算一个图形的面积或周长时,实际上是把数值代入有关的公式,算

  出的结果就是它的面积或周长.

  (1)说出梯形的面积公式.

  (2)说出梯形面积公式中每一字母表示的意义.

  (3)说出字母所代表的数值.

  (4)学生尝试解答.

  教师强调:在利用公式进行计算时,计算的结果不必写出单位名称,只在答题时注明就行了.

  (5)练习:一个长方形的长是8.4厘米,宽是4.6厘米,它的周长是多少厘米?

  三、课堂小结

  今天这节课学习了什么知识?

  四、课后作业

  (一)已知一个三角形的底是3.8分米,高是1.5分米.求这个三角形的面积.

  (二)先写出下面图形的周长和面积的计算公式,再把数值代入公式计算.

  1.一个长方形,长7.2厘米,宽1.8厘米.

  2.一个正方形,边长24毫米.

  五、板书设计

  用字母表示运算定律和计算公式

  运算定律

  计算公式

  可以写成

  读作:的平方

  表示:两个相乘

  例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.

  =(3.5+5.5)×4÷2

  =9×4÷2

  =18

  答:梯形的面积是18平方厘米.

  探究活动

  找规律

  活动目的

  1.能正确用含有字母的式子表示数量.

  2.培养学生的抽象思维能力和概括能力.

  活动题目

  仔细观察,发现规律,得出结论,然后填空.

  35=3×10+5702=7×100+0×10+2

  72=7×10+2123=1×100+2×10+3

  16=1×10+6564=5×100+6×10+4

  …………

  1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是().

  2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是().

  数学教案-用字母表示运算定律和公式

  活动过程

  1.学生分小组讨论.

  2.汇报思考过程和答案.

  3.仿照题目类型,每个小组自编一组练习,相互交换解答.

  参考答案

  1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是(10a+b).

  2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是(100a+10b+c).

小学五年级数学教案15

  教材说明

  综合应用“量一量找规律”是在完成了第四单元“简易方程”的教学之后安排的,旨在让学生综合运用所学的测量、统计和方程等方面的知识,通过动手操作揭示事物之间的内在规律,激发学生学习数学的兴趣,在培养学生实践能力的同时培养学生归纳推理的思维能力。

  “量一量找规律”活动由以下四部分组成。

  1.自制实验工具。

  学生在充分理解方程意义的基础上,利用皮筋、木棒、盘子和细绳等材料小组合作制作一个简易秤。具体的做法是用细绳将盘子拴住做成一个托盘,然后用皮筋分别将托盘和木棒拴住。

  2.收集实验数据。

  学生利用自制的简易秤,依次称量1本、2本、3本等不同数量的课本,在统计表中记录称量的课本数和相应的皮筋总长度,并计算出每增加一本书皮筋伸长的长度。

  3.分析数据。

  引导学生观察统计表中的信息,并根据表中的数据绘制折线统计图,启发学生讨论从统计图表中能够获得哪些信息。

  4.根据统计结果归纳推理。

  根据统计图表的结果小组合作探究皮筋长度和课本数二者之间存在的规律及此规律适用的范围。

  整个活动不仅使学生经历从收集实验数据、数据、制成统计图表到根据统计结果推理事物之间内在本质关系的全过程,而且促使学生进一步体验运用所学知识探究未知事物的乐趣。

  教学建议

  1. 这部分内容可用1课时进行教学。

  2. 这个活动是一个操作性很强的活动,教学时可采用小组合作的形式放手让学生尝试,充分调动学生自主探索的积极性,教师只在关键处予以一定的引导和点拨。

  3.在制作实验工具部分,教师可提前布置学生准备制作材料,并引导学生思考:对制作简易秤使用的橡皮筋和木棒有什么具体要求,启发学生选择弹性较好的橡皮筋,至少在称量6本数学书时不会超出弹性限度或发生永久变形;选择的木棒要尽量做到长度适中、粗细均匀,在称量时不会弯曲、变形。此外,拴盘子时要注意拴的角度和拴绳的长度,使托盘在称量时保持水平、稳定。当然,教师也可根据情况灵活安排,如可用弹簧来代替橡皮筋,在制作时用铁钩等代替木棒达到称量的目的。

  4.在收集实验数据部分,教师可在实验之前要求学生先明确书本第77页中统计表中要求采集的信息,并引导学生讨论测量过程中应该注意的事项。例如,要明确测量的起点和终点;测量皮筋长度时要等橡皮筋和秤盘均处于稳定状态时再测;称量时要设法使木棒保持水平……这样得到的数据误差较小。具体实验的实施可采取小组分工合作的形式。

  5.在分析数据部分,教师根据统计表绘制出折线统计图,引导学生仔细观察统计图表,想一想统计图表呈现的特点,并讨论它们传达出的信息。然后,对应统计图表,请小组同学互相说一说:“如果要称量7本书,皮筋会伸长多少?8本呢?10本呢?”

  6.在根据统计结果归纳推理部分,老师引导学生思考皮筋长度和课本数二者之间存在的规律,向学生初步渗透函数的。如果有的小组实验数据与理论上y=a+bx(a代表皮筋原长,b代表每增加一本书皮筋伸张的长度)的关系存在一定误差,老师可引导学生分析原因,也可向学生客观说明。

  7.在学生出二者之间存在的规律后,老师还可进一步启发学生思考“如果要称量的课本越来越多的话,皮筋会发生什么变化”,帮助学生理解上述二者的关系均是建立在皮筋的弹性限度之内的,反之,二者的关系不存在。

二维码

扫一扫关注我们

版权声明:本文内容由互联网用户自发贡献,本站不拥有所有权,不承担相关法律责任。如果发现本站有涉嫌抄袭的内容,欢迎发送邮件至 baisebaisebaise@yeah.net举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。

标签: 实用文   教案

上一篇:一年级上册语文教案

下一篇:中班教案

相关文章

评论

发表评论